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An attempt to simplify Navler-Stokes equations for description of two-dimen-
slonal stationary nearsonic flows of a perfect (*) gas was apparently made
for the first time by Liepman, Ashkanas and Cole (see for example [1]). The
work of Sternberg [2], Sichel [3 and 4], Szaniawsky [5] and other authors
has been devoted to a clarificatlon of the effect of viscosity and thermal
conductivity on some flows of a compregsible medium with veloclties close to
the velocity of sound.

In tge present paper as ptotic equations, which are satisfled by flows
of the "short wave" type L6 and7] propagating in a viscous thermally con-
ducting medium are derived on the basis of Navler-Stokes equations and on
the basis of fundamental laws of thermodynamics. Qudlitative estimates are
obtained for dimensions of zones 1n which the effect of dissipatlve processes
can be substantial.

In the second part of the paper statlonary near-sonic flows are examined.
The effect of viscosity and thermal conductivity on asymptotic pattern of
flow over profiles and bodies of revolution by a stream which 1is sonic at
infinity 1is investigated. It 1s discovered that in the two-dimensional case
the solution of Frankl' [8] for an i1deal gas, correctly descrilbes nearsonic
flow of a real gas far away from the profile with the exception of the shock
front structure itself. However, in the case of flow over bodies of revolu-
tion by a stream which 1s sonic at infinity, the asymptotic flow pattern of
a viscous, thermally conducting gas is qualitatively differ :nt from the pat-
tern gilven by the solution of equations for an ideal gas [9 and 10]. In order
to establish the true flow pattern it is necessary to preserve dissipation
terms in the equations of motion,

In the description of real gas flows it is frequently permissible to neg-
lect viscosity and thermal conductivity because usually coefflcients of vis-
cosity and heat conductivity are not large. Dissipation processes play an
important role only in regions where a sharp change in flow parameters occurs,
for instance in the boundary layer. These same processes together with the

*) The term "perfect" is applled to a gas which obeys the Clapeyron equation
of state, the designation 'ideal” will refer to an inviscid, non-thermally-
conducting gas.
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nonlinear character of equations of gas dynamics determine the structure of
shock waves [11 and 12]. Problems are frequently encountered in gas dynam-
1cs where falrly sharp changes in flow parameters take place ovcr narrow
regions adjacent to shock fronis. Such flows are referred to as short waves;
their general theory for an ideal gas was developed in [6 and 7).

In short waves gradients of flow parameters can be so significant that it
becomes necessary to take into account the effect of viscosity and thermal
conductivity. In the paper of Sternberg [2] which 1s devoted to Mach reflec-
tions of weak shock waves, it is shown that discrepancies exist between theo-
retical and experimental results. This is related to the fact that the flow
theory of an ideal fluid 1s not satlsfactory ln some region near the triple
point and it 1s necessary to take into account dissipation processes which
take place in the real gas. In this region splitting of the 1incident shock
wave into a reflected wave and so-called Mach "stem" occurs. In the nontran-
sition region each of the waves mentioned has quasi-one-dimenslonal structure.

On the other hand the structure of shock waves in the vicinity of the triple
point 1s essentially two-dimensional and is not permissible any more to neg-
lect the change 1in the veloclity vector component which 1s tangential to the
front. Sternberg called such shock waves the "non-Hugoniot" type. It fol-
lows from conservation laws [2] that the width of the weak non-Hugoniot shock
wave 1s at least several times greater than the width of the shock wave for
which the usual conditions of the surface of a strong dilscontinulty apply.
Another example of a non-Hugoniot shock wave arising in the interaction of

a weak shock wave with a boundary layer was investigated by Sichel [3 and4].

Problems investigated in [2 to 4] represent essentially examples of short
waves arising in stationary flows where dissipation processes take place.

1, We will derlve general equatlons for short waves in a viscous, ther-
mally conducting gas. Equations of continuity, Navier-Stokes equations and
energy equations in the case of two~dimensional nonstationary motion are
written in the following form, respectively, [12 and 13]

dpv,, dpv,, 1)pv
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Here ¢ is time, x, y are orthogonal Cartesian (for plane-parallel
flow) or cylindrical (for the case of symmetry with respect to x-axis) coor-
dinates, v,, v, are corresponding components of the veloclty vector, p is
density, p 1s pressure, T 1s temperature, g is specific entropy, A,{,x
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are coefficients of viscosity, second viscosity and thermal conductivity.
For plane-parallel flow the coefflcient % =1 , for axisymmetric flow % = 2.
It is frequently convenlent to examine the coefficlent of so-called "longi-
tudinal" viscosity u =4/4% +

We will introduce specific enthalpy gy , adlabatlc sound velocity @ ,
thermal expansion coefficlent o , thermal pressure coefficient g , specific
heats at constant pressure e, and constant volume e, and the ratio of heat
capacities vy

[/} o 1 L /0 e
2 _ (9P > < > ] < P P
" = | — o =0|=r — = [ — =L
((,p a5 )y B=7 a,,,)p, =1,
According to equatlion of state and a baslc thermodynamic relationship,
the following equations are applicable for any two-parameter medium:

dp = a%dp + (%%)p ds, dw = Tds -+ ‘%D— (1.3)

If one takes advantage of relationships between thermodynamic quantitiles

[14]
3= e o =80 = [ (3,15

then Equation (1.3) can be rewritten in the form [15]
r—"De,
ao

dp = atdp + 2% gs,  Tds = cdl — %dp, of —

‘p

(1.4)

For a perfect gas it is well-known that o« = 1/7 . Equations (1.1),(1.2)
and (1.3) form a closed system.

Eliminating specific entropy s from Equations (1.2) and (1.4) we obtain

aT or . T op ap ap
pep (5 + va gy + ”uz:y") — ol (F+ vzl + g ) =

) b S5 e (T

Yy
vdp = a’ep + apa®dT 1.6)

It is assumed that a wave propagates in the direction of the x-axis
through an undisturbed quiescent gas with parameters pg, g, 1'g. Qgy Mgy Cpy Koo
Ko € Toand O . In this wave the excess values of all quantitles are
small compared to the initial values. Perturbations of pressure, density,
temperature and speed of sound have the same order cf smallness as the longi-
tudinal component of the velocity vector v

x
For derlvation of.approximate equations for short waves a moving system
of coordinates 1s introduced Jjust as in [6 and 7]

x =8, y=m, L=t (1.7)
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Transition 1s made to nondimensional variables

E=a,(1+ A), 1 = a0,9, b= RoToT / Polto
v = apMu, vy = aglV,yv (1.8)

= Poa® (Po / Pote® + M,P), p=p,(1 + MyR)
T=T,14+ M,Q), a=a,(1 + M,A)

Here WMy, Ny, Ay, 8, and «r, are characteristic values of velocity compo-~
nents, of coordinates and of time; 8, 0, T, u, v P, R, Q and 4 are quan-
tities of the order of unity and 4,, ¥, and ¥, are small in comparison with
unity.

It 1s known [12] that coefficlents of viscosity and thermal conductivity
usually have the same order of magnitude, i.e. thelr ratios are comparable
in their order of magnitude to unity. Coefflclents of viscoslty and thermal
conductlvity are related to the value §¥,. All other parameters are related
to thelr values in the equdilibrium state. Perturbations of all these values
will be designated by primes

= Ao /o + A)y ety oa=0a,(1+a),... (1.9)
Here A’,...5a’,... are small compared to unity.

Passing to new variables (1.7) to (1.9) and preserving only major terms,
the system of equations (1.1), (1.5) and (1.6) can be rewritten in the form
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du |, OP Mo ou |, OP No u (1.10)
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The last equation of system (1.10) is the result of combindng the flrst
two equations of (1.,1) with Equations (1.5) and (1.6) and substitution of
Equations (1.7) to (1 9) into the relationship obtained. Such a procedure
is connected with the fact that in weak waves the enthropy change which
depends on terms on the left-hand side of Equations (1. 2§ and (1.5) has a
higher order of smallness than the increases 1n other parameters. This means
that 1n order to obtain a nontrivial equation for perturbations from the
energy equatlon, it 1s necessary to exclude from 1t quantitles of the first
order of smallness which are connected with mass transport of substance and
its impulse.

As had to be expected, due to substantial influence of viscosity and ther-
mal conductlvity no one problem can be of the simllarity type pecause the
time +t enters into coefficients of 41l Jissipation terms of Equations
(1.10), and derivatives wilth respect to time in these equations cannot become

zero simultaneously.

It 1s characteristic of short waves that the veloclty component and deriva-
tives of all flow parameters in the direction of wave motlion exceed in mag-
nitude the velocity component and corresponding derivatives in the transverse
directlion. Thus it 1s possible to assume [6 and T7)

N L M,, AL, (1.11)
Just as in ldeal gas we will presume that the following expressions apply
TR / or, wu/ot,... ~1 (1.12)

In the first four equations of the system (1.10) therefore terms containing
derivatives wilth respect to time are small compared to principal terms and

they can be neglected. We note that retaining of these derivatives corre-

sponds to the usual linearization of equations of motion of a viscous ther-
mally conducting gas.

The characteristic value of time +, was determined from Equations {1.8)
as a quantity inversely proportional to the coefficient of longitudinal vis-
cosity ., Which 1s usually proportional to the length of free path for
molecules [12]. The wave length 4, usually substantially exceeds the length
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of molecular free path. These considerations lead to inequality

1/1,<< A, (1.13)
Relationships(1.11) to (1.13) permit significant simplification of the
system of equations (1.10) which after discarding of minor terms and after
Integration of the first, second and fourth equations takes the form

R:u, P=u, Q:uu, N(,av___Moau

aoTq Ay 36 8, 30
t'_?l_&_ Mo . du Ju 1 No [0v k—1v
ot lm @ =8 g — 05 g [y + T -
1 Ta L Mo—Dwo] u
T Azt [1 + Hocp, }_0_65 =0 (1.14)

In the integration it was additionally assumed that the wave propagates
through a homogeneous medium at rest. In the last equation the dependeénce
which arises from the last condition (1.4%), between perturbed values of gas
parameters 1s also taken into account. The first three relatilonships (1.1%)
are analogous to relations between excess values of gas parameters 1in an
acoustic wave or in a two-dimensional travelling impulse of small amplitude.

For simplicity we further suppose that Ao~ My - Then 1t is possible to
obtain from the last two equations of system (1.14%)

Nob,
M2

No __
MoBo <

Ay ~M,, ~1,  T,M2 ~1, 1 (1.15)
If @,~ 1, then WMo~ M,2, and ¥,/My00o~ M, - Thls case which belongs to
quasi-one-dimensional flows, 1s not examined here. If however 60<g§ 1,

then it follows from relationships (1.15)
0o~V M, No~MVM, 1,~1/M (1.16)

The first two conditions (1.16) are analogous to relationships between
characteristic values of corresponding quantities in the theory of short
waves for an ideal gas [6 and 7). In the approximation investigated

A+ u=mu __1 (_1221_)
o = T0p% \o (1/p)) s

For a perfect gas m = %(Y + 1) . Taking into consideration the last
relationship and substituting Equations (1.15) into the last two equations
of (1,14) we arrive at equations of short waves propagating in a vlscous
thermally conducting gas

Ou ov du ou ou 1 [ ov (k—1) v
=% w85 — 0545+ S5 -
L (g 4 o= Pu v By Do
— (14 oo J5w =0 (¥er i _T__&) (1.17)

Here /Vp, 1is the Prandtl number. The first of Equations (1.17), Just as
in the ideal gas, expresses the condition of irrotational flow. In the
second equation, however, an additional last term appears whlch takes Into
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account the viscoslty and thermal conductivity of a real gas.

According to (1.17) the potential ¢ (0, ¢, T) may be introduced for com-
ponents of velocity y and v Thils potential must satisfy Equation

o%p &g k —1 ¢
6165 +( 086 6)‘632"“ 9509 + [31‘}2 + = 61‘}]

—%(1+7}’VP—1)§§2=0 (0= 2% v:a“’) (1.18)

With varlables
=8, 8 =V29, =21+ (ro—1)/Np, 111
u® = myli, v = (mo / VE_)- v, cpo = myP

Equations (1.17) and (1.18) take, correspondingly, the form (the superscripts

° for variables are omitted in the following) (1 19)
du o ou ou k—1)v 1 0%
% T & Tat@—95%— aﬁ‘f'aa‘{‘ —7am =Y

09 &\ 9% &g 2% 9
81:66 +< 6) ¥ _0660{} +W+TW——TW—O (1.20)

By means of equations obtained we can perform an asymptotic evaluation of
slze of the reglon in which dissipation processes play a substantial role.

For r - «» all principal terms of Equation (1.19) must be comparable in
the order of magnitude.

From this we have for @& and 9* and for the duration 1 of the non-
Hugoniot wave the relations
Ot ~n*t — v ~ const
or
0% ~n* ~const / T, ¢ ~ const (1.21)

In accordance with Equations (1.7) and (1.8)
=z /1, Y=y (@ = (& — agt)/a)

Here x* and »* represent the dimensions of the non-Hugonlot region in
the physical space x and y

Conditions {(1.21) now lead to important asymptotic evaluations

¢ ~y* ~1° ~const (1.22)

This indlcates that the dimensions and duration of non~Hugonlot wave tend

to approach constant values for large values of time.

In application to the problem of Mach reflection of a weak shock wave from
a wedge or-conical point Equations (1.19) describe the transition process
from the moment of formation of triple configuration to the point where the
flow reaches some quasi-stationary state in the non-Hugonlot wave which has
asymptotically constant dimensions and duration. For 1 = = cectain simi-
larity solutions of egquations far short waves 1n an ldeal gas {6 and 7]
describe the entire flow region with the exception of the immediate vicinity
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of the triple point. At the triple point itself in these equations the pre-
sence of a singularity should be allowed.

In gas flow with velocities close to sound veloclity the change of flow
parameters 1is sufficiently gradual far away from bodles over which the flow
occurs. But, jJust as in the case of short waves, the vector component of
the perturbed velocity and derlvatives of all parameters of the medium in
the directlon of free stream exceed slgnificantly in magnitude the velocilty
component and the corresponding derlvatives in the perpendlcular directilon.
In other words, conditions analogous to (1.11) [9)] are applicable. Here, as
will be shown below, at sufficiently small Reynolds numbers and Peclet num-
bers the disslpation processes in the real gas can also have a substantial
influence on the entire pattern of flow.

2, We will examine the problem of flow over a body by a viscous thermally
conducting gas stream which is sonic at infinity. Derilvation of equations
for two-dimensional nonstationary nearsonic flow 1s analogous to derilvation
of equations for short waves presented in Section 1. The same set of Equa-
tions {1.1), (1.5) and {1.6) is selected as a starting point, only flow para-
meters are now related not to initial but to critical values which willl be

deslgnated by an asterisk in the following text.
Nondimensional coordinates of time
R e L (2.1)
and also components of velocity vector of the perturbed flow
vz = a, (1 + Myu), vy = a, Ny (2.2)
are Introduced somewhat differently.

Here again the nondimensional parameters x°, y°, t°, 4y and v are in
the order of magnitude comparable to unity, ¥, and §N, are small, the quan-
tities Ay, 655 t, may be large. All other nondimenslonal parameters and
their perturbations are introduced in analogy to Equations (1.8) and (1.9).

Substituting new varilables into Equations (1.1), (1.5) and (1.6), taking
into account conditions (1.11) and retaining major terms in relationships
obtained, we have in analogy to Section 1

- - =1 No 0v _ M, du
R=—u, P=—u, Q=— a0, T s R, 0z 8, 3y

My du | Mg du__ N, [0 (k—i)v]_MO( T*—1>@__ .
A T Ay M o T T, %+ 5 — N ) e =0 (23)

Here the superscripts © are omltted for nondimensional varlables.

The first three equatlons are integrated under the assumptlon of homoge-
neity of free stream. The last equation 1s a consequence of the first two
equations (1.1) and Equations (1.5) and (1.6). Just as in Sectlon 1 1t 1s
assumed that the characteristic time ¢, is sufficiently large, so that in
all equations (2.3) with the exception of the last it 1s possible to neglect
derivatives wilth respect to time. Otherwise a linearized system of acousti-
cal equations with consideration of viscoslty and thermal conductivity would
have resulted.

Nonlinear equatlons of nonstationary nearsonic flows of a viscous thermal-
1y conducting gas are obtained from system (2.3) for conditions
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Ay ~1 /My 8y ~1/M7, Ny~MMh, ty~1/M2 (2.4)
With new variables
2=z ¥y =4 (r, = 1)/ Ne oy, ¢ =Yylt + (1r,—1)/Np,lt
w' =2m, 1+ (v, — 1)/ Ne; I"Mu, o = 2m, (1 + (1, — 1)/ Np;, "k
they have the form (primes are omitted everywhere in the following text)

du  or du du v (E—1)w» 0%u
Gy Tt e T lam T e g o =0 (2.9)
As in Sectlon 1 we can show that the entropy change ls a quantity of
higher order of smallness than perturbations of other flow parameters.

Nearsonic flows subject to Equations (2.5) are irrotational. For the
potentlal of perturbed flow ¢(x,y,t) the following equatlion is valid

o2 dp o2 —
__.S’__{_ ¢ P g  k—1 09 8% -0 < i ékp) (2.6)

gior U ox o oy 0y 9 U= g s PGy

In the papers of Frankl' [8] and Landau and Lifshits [12] the stationary
problem of flow over profiles by a stream of ideal gas which 1s sonic at
infinity, is solved. The analogous problem for flow over bodies of revolu-
tion 1s examined by Guderley, Yoshihara and Barish [9, 16 and 17], and by
Fal'kovich and Chernov.[10]. In both cases the flow far from the body 1is
described by a similarity solution

? (z,y) = y*2 @ (§) (& = =fy™ 2.7)
where for flow over a finite body the value n = 4 /. corresponds to profiles
and n =%/, corresponds to bodies of revolution.

For smaller values of 5 1n the solution (2.7) in both cases a limlting
line arises. If the similarity index varies in the range 4/; <npn<1l for
two-dimensional flow and ‘/; <n<«<1l for axisymmetric flow, then the prob-
lem of flow over a half-body which is expanding in width to infinlty is
obtalned.

An example of nearsonic flow of an ideal gas near a half-body of revolu-
tion of the form Y ~ /x 1s given byLadyzhenskii [18], who found the exact
solution of an equation for the potential &(g) in the case n =2/, .

The flow of real gases can be described by solutions for equations of
motion of an ideal compressible fluid only in the case when they turn out
to be asymptotical for equabions of motion of real gases (1.1), {1.5) and
(1.6) for small values of coefficlents of viscosity and thermal conductivity.
From this point of view it is interesting to examine the similarity solutlon
(2.7).

If one substltutes Expression (2.7) into Equation (2.6) which for the
stationary case has the form

b 9 Yo k—1 0% Fe (2.8)

gx Oz? oyt y 3y gx3
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and lets y go to Infinity for finite values of x , then terms of the Equa-
tion (2.8) wlll de rease as varlous powers of y

dp g % _ 9% ~
0z 0z ! _@f""~y3n4v 6x3~y2 (2.9)

From this it 1s evident that for n > ?/, the dissipation term in (2.8)
1s small compared to other terms and equations of motion for an ideal gas
can be used. If however n < 2/; , then the last term in the equation (2.8)
becomes comparable 1n magnitude to the first term or even larger. Substitu-
tion of Expression (2.7) into initial equations (1.1), (1.5)and (1.6) leads to
the same result.

For the flow of (2.7) we can examine the Reynolds number I[Vg, and the
Peclet number Npe, which characterize the effect of viscosity and thermal

conductivity Nre = 0,UX /iy, Npe = 0, UX /%y (2.10)

Here U and x are the characteristic values of veloclity and length. In
the stationary problem (2.6) and (2.7) concerning asymptotic rules of decay
of perturbations far from bodles over which the flow takes place, the char-
acteristic velocity 1s the velocity of perturbed motion. From relationships
(2.6) and (2.7) for components of veloedlty ¢ and V¥ far from the body the
following result is obtained

U ~ yain-D, V ~ g3n-1) (2.11)
and the characteristic length X —~ y™.

Taking into account these relationships the following asymptotic estimates
are applicable ; _
e Nre, Nps~ 32 (2.12)

For n > 2/; Reynolds number and Peclet number are large and dlssipation
processes may be neglected, however for n g 3/; they are finlte or even
small. This indicates that even for fairly gradual change in flow parameters
1t 1s necessary to take into consideration viscosity and thermal conductlvity.

Thus the solution of the two-dimensional problem by Fankl' [8] for near-
sonic flow of ideal gas over finite bodiles (n = 4'/5) can be utilized 1n the
case of a real gas with the exception of description of the shock front
structure itself which was introduced into this solution by Landau and Lif-
shits (12]. The asymptotic pattern of flow over finite bodies of revolution
(n =+/,) by a gas stream which is sonic at infinity 1s qualitatlvely dif-
ferent from the pattern which 1s obtained in the framework of equations of
motion of an ideal gas, and it must be established on the basis of the solu-
tion of the full Equation (2.8).

It is also important to emphasize that, as is evident from relationships
(2.11), consideration of viscosity and thermal conductivity in flow over
finite bodies of revolution leads to a lowering of the degree of decay of
velocity components with distance.

A change in the asymptotic pattern of flow and a decrease in *the degree
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of decay of perturbatlions as compared to an ideal gas will also take place
in half-bodies of revolutlon corresponding to values in the interval

‘/v<n<2/s .
For stationary flows Equations (2.5) assume the form

ou av ou v (k—1v u 0

dy oz ¥ 5z oy y 0x? (2.13)

The system of equations (2.13) permits a similarity solution of the type
(2.7) for a single value pn =2/; . In order to examlne this case we intro-
duce new varlables

u(z,y) =y tfE), v(zy) =ylgE) E=zx/y") (2.14)
Functions g(g) and g(g) must satisfy the equations
dazf df 2 .dg _ dg 2 2 . df -
az fgg—ggd‘g—f‘(k—z)g—(), gg——"gf—‘ggaz (2.19)
Integrating the last equation and substituting the obtalined relationship
into the the first equation, the system (2.15) can be represented in the form

(2.16)
(e S+ 2=~ =0, g=3(—7)

For the solution of the ordinary differential equation (2.16) in the axir
symmetric case (% = 2) numerical methods were applied. Results of integra-
tion were compared with solution [18] of the problem of flow over half-bodies
of revolution by a stream of 1deal gas which is sonic at infinity. Boundary
conditions were selected 1n such a manner that in the solutlion of Equatilon
(2.16) the outer limit of the boundary layer colncides with the walls of the
half-body ¥ = Y(x) in the ideal gas. The relationship ¥(x) is determined
by the index of simllarity n = a/; and by the value of constant » in

2.16
(2.16) Y — VT

In Fig,1 and 2 1n the upper and lower half-plane, respectlvely, plots of
dependence of functions y and g on the simllarity variable g are presented.
Lines marked with index 1 correspond to solutions of Equations(2.16), wlth
index 2 correspond to results of [18]. In flow around "thick" half-bodiles which
correspond to relatively large values of ¢ (¢ = 1.2; Fig.l) the differences
petween reai and ideal gases are not great., It may only he noted that the
peak of the function s 1s slightly cut off and shifted in the direction of
flow. In the profille of the function g , on the other hand, arlses a so
far weakly developed maximum. With decreasing relative "thickness" of the
half-body (o =0.0149; Fig.2) these differences become substantial and dissi-
pation processes play an increasing role. The lncrease in the effect of
viscosity and thermal conductivity in the flow over thinner half-bodies 1s
related to the circumstance that for decrease in the value of » , the values
of Reynolds number and Peclet number (2.10) also decrease, In fact, it fol-
lows from group properties of solution (2.14%) for an ideal gas that the
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functions
-2 -
u = K% hf (KE), v = K3yg (KE) 2.47)
where X 1s an arbitrary constant, also represent solutions of equations of
nearsonic motlion of an ideal gas. Boundary condltlons permit to establish

rg
f.g / a0

I ol
|

Fig. 1

a connectlon between constants ¥ and ¢ for the half-bodies under exami-

nation N
K = ()"

Now 1t 1s possible to find the dependence between Reynolds and Peclet
numbers and the quantity o

Nge, Npe ~ K2y K-y ~ K ~ ¢'s (2.18)

From relationship (2.18) 1t is easy to see that the thinner the half-body
(i.e. the smaller the quantity o )}, the smaller will be the asymptotic
values of ”Be and Nfe numbers and the more substantial will be the influ-
ence of viscosity and thermal conductivity. As was to be expected, after
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estimates (2.9), for flow over half-bodies of the form Y ~ /x (which cor-
responds to & similarity index »n = a/; ) corrections of solution [18] on
account of vlscosity and thermal conductlivity have the same order of magni-
tude as the solution 1tself,

The authors express thelr sincer~ gratitude to S.A. Khristlanovich for
formulation and discussion of problcms which were examlned.
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