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An attempt to simplify Navler-Stokes equations for description of two-dimen- 
sional stationary nearsonic flows of a perfect (*) gas was'apparentl made 
for the first time by LIeDman, Ashkanas and Cole (see for example [l] 5. The 
work of Sternberg [2], Sichel [3 and 41, Szaniawsky [s] and other authors 
has been devoted to a clarification of the effect of viscosity and thermal 
conductivity on some flows of a compressible medium with velocities close to 
the velocity of sound. 

In t;e present paper as ptotic equations, 
$ 

which al'e satisfied by flows 
of the short wave' type 6 andfl propagating In a viscous thermally con- 
ducting medium are derived on the basla of Navler-Stokes equations and on 
the basis of fundamental laws of thermodynamics. Qualitative estimates are 
obtained for dimensions of zones in which the effect of dissipative processes 
can be substantial. 

In the second part of the paper stationary near-sonic flows are examined. 
The effect of viscosity and thermal conductivity on asymptotic pattern of 
flow over profiles and bodies of revolution by a stream which is sonic at 
Infinity Is Investigated. It is discovered that In the two-dimensional case 
the solution of Frankl' C8] for an Ideal gas, correctly describes nearsonic 
flow of a real gas far away from the profile with the exception of the shock 
front structure itself. However, In the case of flow over bodies of revolu- 
tion by a stream which is sonic at infinity, the asymptotic flow pattern of 
a viscous, thermally conducting gas Is qualitatively diffel:nt from the pat- 
tern given by the solution of equations for an Ideal gas [g and 10-J. In order 
to establish the true flow pattern it Is necessary to preserve dissipation 
terms in the equations of motion. 

In the description of real gas flows it is frequently permissible to neg- 
lect viscosity and thermal conductivity because usually coefficients of vis- 
cosity and heat conductivity are not large. Dissipation processes play an 
Important role only In regions where a sharp change In flow parametersoccurs, 
for Instance in the boundary layer. These same processes together with the 

*) The term tlperfectU is 
of state, the designation 

applied to a gas which obeys the Clapeyron equation 
'ideal" will refer to an inviscid, non-thermally- 

conducting gas. 
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nonlinear character of equations of gas dynamics determine the structure of 
shock waves [ll and 123. Problems are frequently encountered In gas dynam- 
ics where fairly sharp changes In flow parameters take place over narrow 
regions adjacent to shock front@. Such flows are referred to as short waves; 
their general theory for an ideal gas was developed in [6 and 73. 

I.n short waves gradients of flow parameters can be so significant that It 
becomes necessary to take Into account the effect of viscosity and thermal 
conductivity. In the paper of Sternberg [2] which Is devoted to Mach reflec- 
tions of weak shock waves, It is shown that discrepancies exist between theo- 
retical and experimental results. This is related to the fact that the flow 
theory of an ideal fluid is not satisfactory In some region near the triple 
point and it is necessary to take Into account dissipation processes which 
take place in the real gas. In this region splitting of the Incident shock 
wave into a reflected wave and so-called Mach nstemW occurs. In the nontran- 
sitlon region each ofthewaves mentioned has quasi-one-dimensional structure. 
On the other hand the structure of shock waves in the vicinity of the triple 
point is essentially two-dlmensj.onal and Is not permlssible any more to neg- 
lect the change in thevelocity vector component which Is tangential to the 
front. Sternberg called such shock waves the "non-Hugoniot" type. It fol- 
lows from conservation laws [2] that the width of the weak non-Hugonlot shock 
wave Is at least several times greater than the width of the shock wave for 
which the usual conditions of the surface of a strong discontinuity apply. 
Another example of a non-Hugoniot shock wave arising in the interaction of 
a weak shock wave with a boundary layer was investigated by Slchel [3 andb]. 

Problems Investigated in [2 to 43 represent essentially examples of short 
waves arising in stationary flows where dissipation processes take place. 

1. We will derive general equations for short waves in a viscous, ther- 

mally conducting gas. Equations of continuity, Navier-Stokes equations and 

energy equations in the case of two-dimensional nonstationary motion are 

written in the following form, respectively, [12 and 133 

+ IE.(~~)2+~(~+~)a~(~)2+ [‘“;“vY]*}+ (1.2) 

+ i:_ _ _$ 1,) [$ + g! + Ck yl) y2 

Here t is timt~, .Y, y are orthogonal Cartesian (for plane-parallel 

flow) or cylindrical (for the case of symmetry with respect to x-axis) Coor- 

dinates, vx, UY are ccr*respondlng components of the velocity vector, p is 

density, p Is pressure, T is temperature, s Is specific en:ropy, h,C,n 
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are coefficients of viscosity, second viscosity and thermal conductivity. 

For plane-parallel flow the coefficient k = 1 , for axlsymmetric flow k = 2. 

It is frequently convenient to examine the coefficient of so-called “longi- 

tudinal” viscosity p = ‘/, X + C . 

We will introduce specific enthalpy m , adiabatic sound velocity c , 
thermal expansion coefficient c , thermal pressure coefficient P , specific 

heats at constant pressure cp and constant volume oV and the ratio of heat 

capacities y 

According to equation of state and a basic thermodynamic relationship, 

the following equatFons are appilcable for any two-parameter medium: 

dp = a2dp $ 
i ) ‘5 ds, 

P 
dw = Tds -f- $- (1.3) 

If one takes advantage of relationships between thermodynamic quantities 

[ 141 

ii$,,.= r (g% 

then Equation (1.3) can 

dp - a2dp $ y ds, 

For a perfect gas it 

and (1.3) form a closed 

Eliminating specific 

be rewritten in the form [151 

Tds = c,dl’ - $ dp, 
CLT = (r - 1) % 

a2a (1.4) 

is well-known that CL = l/T . Equations (1.1),(1.2) 

system. 

entropy s from Equations (1.2) and (1.4) we obtain 

ydp = a2q + apa2dl (1.6) 

It is assumed that a wave propagates In the direction of the x-axis 

through an undisturbed quiescent gas with parameters po, PO, l’,. a,, h,, co, x,,, 

PO1 cpo, To and % . In this wave the excess values of all quantities are 

small compared to the initial values. Perturbations of pressure, density, 

temperature and speed of sound have the same order cf smallness as thelongl- 

tudlnal component of the velocity vector v, . 

For derivation of.approximate equations for short waves a moving system 

of coordinates is Introduced just as In [6 and 73 

x = Et, y = rltt t=t (1.7) 
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Transition Is made to nondimensional variables 

E - a, (1 + Aod), rl = a,0 ofi, t = pozoz / poa,2 

v, = aoMou, vy = a,N,v (1.8) 

P = PO+ (p. 1 poao2 + MOP), P = ~0 (1 + MOW 

T = To (1 + M&2), a = a, (1 + M,A) 

Here M,, , NO, A,, f&, and TV are characteristic values of velocity compo- 

nents, of coordinates and of time; 6, 6, z, u, v, P,R, 52 and A are quan- 

tities of the order of unity and &, ,4& and NO are small in comparison with 

unity. 

It is known [12] that coefficients of viscosity and thermal conductivity 

usually have the same order of magnitude, i.e. their ratios are comparable 

In their order of magnitude to unity. Coefficients of viscosity and thermal 

conductivity are related to the value &. All other parameters .are related 

to their values In the equlllbrlum state. Perturbations of all these values 

will be designated by primes 

h -zY PO (ab iv" -f- h'), . . .( a = a, (1 + a’), . . . (W 

Here ?..',...,a',... are small compared to unity. 

Passing to new variables (1.7) to (1.9) and preserving only major terms, 

the system of equations (l.l), (1.5) and (1.6) can be rewritten In the form 
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(To - 1) a.’ ap ( xO%TO axi X”XOTO __- 
A0 d6 ~~PoAo~c~,~ 32 Wo~02Cpo~ 

1 l\:,;-A.0 (To - 1) -- _ No2 (To - 1) 
z ~,y~,~~loAo~a,7’or zoAfoeo2aoTot 

{(&)“+ [(E+!y} - 

_ 2N02 (TO - 1) (50 - %ho) (k - 1) u au 
qJ&oeo2aoT,z ___ iGf = 6 

o 

The last equation of system (1.10) is the result of combindng the first 
two equations of (1.1) with Equations (1.5) and (1.6) and substitution of 
Equations (1.7) to (1.9) into the relationship obtained. Such a procedure 
is connected with the fact that in weak waves the enthro y 
depends on terms on the left-hand side of Equations (1.2 P 

change which 
and (1.5) has a 

higher order of smallness than the increases In other parameters. This means 
that In order to obtain a nontrivial equation for perturbations from the 
energy equation, it Is necessary to exclude from It quantities of the first 
order of smallness which are connected with mass transport of substance and 
its Impulse, 

As had to be expected, due to substantial influence of viscosity and ther- 

mal conductivity no one problem can be of the similarity type because the 

time 7 enters Into coefficients of all .lisslpation terms of Equations 

(1.10)) and derivatives with respect to time in these equations cannot become 

zero simultaneously. 

It Is characteristic of short waves that the velocity component and deriva- 

tlves of all flow parameters in the direction of wave motion exceed In mag- 

nitude the velocity component and corresponding derivatives in the transverse 

dlrection. Thus it Is possible to assume [6 and 73 

N, < M,, A,<00 (1.11) 

Just as In Ideal gas we will presume that the following expressions apply 

TAR / dz, zdu / dt,. . . - 1 (1.12) 

In the first four equations of the system (1.10) therefore terms containing 

derivatives with respect to time are small compared to principal terms and 

they can be neglected. We note that retaining of these derivatives corre- 

sponds to the usual llnearlzation of equations of motion of a viscous ther- 

mally conducting gas. 

The characteristic value of time ~c was determined from Equations (1.8) 

as a quantity inversely proportional to the coefficient of longitudinal vis- 

cosity Ilo, which is usually proportional to the length of free path for 

molecules [ 121 . The wave length A, usually substantially exceeds the length 
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of molecular free path. These considerations 

1 /z,,(( Ao (1.13) 

Relatlonships(l.11) to (1.13) permit significant simpllflcatlon of the 

system of equations (1.10) which after discarding of minor terms and after 

integration of the first, second and fourth equations takes the form 

R = u, P = u, 
Yn - 1 N, au Mn au 

1211 

lead to Inequality 

In the Integration It was additionally assumed that the wave profiagates 
through a homogeneous medium at rest. In the last equation the dependence 
which arises from the last condition (1.4), between perturbed values of gas 
parameters Is also taken into account. The first three relationships (1.14) 
are analogous to relations between excess values of gas parameters In an 
acoustic wave or in a two-dimensional travelllng impulse of small amplitude. 

For slmpllcity we further suppose that 8,~ ~c . Then it Ps possible to 

obtain from the last two equations of system (1.14) 

If eo- 1, then N,- MO 2, and N&f,, eo- MO . This case which belongs to 

quasi-one-dimensional flows, Is not examined here. If however OO<& 
then It follows from relationships (1.15) 

(1.16) 

The first two conditions (1.16) are analogous to relationships between 

characteristic values of corresponding quantities In the theory of short 

waves for an ideal gas [6 and 73 . In the approximation Investigated 

A + u = m,u, m = & (l&J, 
For a perfect gas m = +(v + i) . Taking Into consideration the last 

relationship and substituting Equations (1.15) Into the last two equations 

of (1,14) we arrive at equations of short waves propagating in a viscous 

thermally conducting gas 

-$(I +v)$+o (Np, =!&(4’3hlC+c)Cp) (1.17) 

Here Npr Is the Prandtl number. The first of Equations (1.17), just as 

In the ideal gas, expresses the condition of lrrotatlonal flow. In the 

second equation, however, an additional last term appears which takes into 
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account the viscosity and thermal conductivity of a real gas. 

According to (1.17) the potential cp (6, 6, <) may be Introduced for com- 

ponents of velocity 11 and u This potential must satisfy Equation 

With variables 

6” = 6, 6” --- 1/zs, To = 2 [1 + (To - 1) / NPr, I-’ z 

U0 = m,u, v” = (m. I -jq v, cp” = m,cp 

Equations (1.17) and (1.18) take, correspondingly, the form (the superscripts 

0 for variables are omitted In the following) (1.19) 
au au h.4 au au au 
%F=iQj 

(k - 1) v 
z,+("-6)a~-ti&i$-+f-+ 6 

I azu o -------_---= 
z at32 

By means of equations obtained we can perform an asymptotic evaluation of 

size of the region In which dissipation processes play a substantial role. 

For T _ m all principal terms of Equation (1.19) must be comparable In 

the order of magnitude. 

From this we have for 6" and 6" and for the duration zx of the non- 

Hugonlot wave the relations 

6% -qrlxT -TX -const 
or 

6" ,-Tjx -con&/z, IT -const 

In accordance with Equations (1.7) and (1.8) 

6" = xX I z, 6" = yx I z (2” = (z - aot)/uo) 

Here rX and y" represent the dimensions of the non-Hugonlot 

(1.21) 

region in 

the physical space JC and y 

Conditions (1.21) now lead to Important asymptotic 

xx - yx -TX - c9nst 

This Indicates that the dimensions and duratlon of 

to approach constant values for large values of time. 

evaluations 

(1.22) 

non-Hugonlot wave tend 

In application to the problem of Mach reflection sf a weak shock wave from 
a wedge or*conlcal point Equations (1.19) describe the transition process 
from the moment of formation of triple configuration to the Point where the 
flow reaches some quasi-stationary state In the non-Hugoniot wave which has 
asymptotically constant dimensions and duration. For T + m certain slml- 
larlty solutions of equations far short waves in an Ideal gas [6 and 71 
describe the entire flow region with the exception of the Immediate vicinity 
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of the triple point. At the triple point Itself In these equations the pre- 
sence of a singularity should be allowed. 

In gas flow with velocities close to sound velocity the change of flow 
parameters is sufficiently gradual far away from bodies over which the flow 
occurs. But, lust as In the case of short waves. the vector comoonent of 
the perturbed Velocity and derivatives of all parameters of the medium In 
the direction of free stream exceed significantly In magnitude the velocity 
component and the corresponding derivatives In the perpendicular direction. 
In other words, conditions analogous to (1.11) [g] are applicable. Here,as 
will be shown below, at sufficiently small Reynolds numbers and Peclet num- 
bers the dissipation processes in the real gas can also have a substantial 
influence on the entire pattern of flow. 

2, We will examine the problem of flow over a body by a viscous thermally 

conducting gas stream which is sonic at Infinity. Derivation of equations 

for two-dimensional nonstationary nearsonic flow is analogous to derivation 

of equations for short waves presented In Section 1. The same set of Equa- 

tions (l.l), (1.5) and (1.6) is selected as a starting point, only flow para- 

meters are now related not to Initial but to critical values which will be 

designated by an asterisk in the following text. 

Nondimensional coordinates of time 

and also components of velocity vector of the perturbed flow 

%c = a* (1 + M,u), vy = a,N,v 

are Introduced somewhat differently. 

(2.3 

Here again the nondimensional parameters 9, bp, to, ~1 and v are in 

the order of magnitude comparable to unity, Kc and N, are small, the quan- 

tities A.,, e,, t, may be large. All other nondimensional parameters and 

their perturbatlons are Introduced In analogy to Equations (1.8) and (1.9). 

Substituting new variables into Equations (l.l), (1.5) and (1.6), taking 

into account conditions (1.11) and retaining major terms In relationships 

obtained, we have in analogy to Section 1 

R=-u, P=-u, Q_~.U’ pp?$g 
* * 0 x Cl 

!!$!& +“!?$n&-+‘[~+‘k-y” “] -$(I+*)$- =0(2.3) 
* 

Here the superscripts O are omitted for nondimensional variables. 

The first three equations are integrated under the assumption of homoge- 
neity of free stream. The last equation is a consequence of the first two 
equations (1.1) and Equations (1.5) and (1.6). Just as in Section 1 It is 
assumed that the characteristic time to is sufficiently large, so that In 
all equations (2.3) with the exception of the last It Is possible to neglect 
derivatives with respect to time. Otherwise a linearized system of acousti- 
cal equations with consideration of viscosity and thermal conductivity would 
have resulted. 

Nonlinear equations of nonstationary nearsonlc flows of a viscous thermal- 

ly conducting gas are obtained from system (2.3) for conditions 
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With new variables 

2’ = x, 3’ = [I + (r* - 1) / NPrp~, t’ = v, [1 + (r* - 1) / Iv,,*] t 

u’ = 2m, [I + (y* - 1) / IV~~,I-~ u, 21’ = 2m, 11 + (y* - 1) / Npr,l-*/*v 

they have the form (primes are omitted everywhere in the following text) 

ifu i)z 
1, = j;- , ~+“!&fp-y~~v_E&~~ (2.5) 

As in Section 1 we can show that the entropy change is a qutU’itity of 

higher order of smallness than perturbations of other flow parameters. 

Nearsonic flows subject to Equations (2.5) are lrrotatlonal. For the 

potential of perturbed flow cp(r,y,t) the following equation is valid 

In the papers of Frankl’ [8] and Landau and Lifshits cl23 the stationary 

problem of flow over profiles by a stream of id&al gas which Is sonic at 

Infinity, Is solved. The analogous problem for flow over bodies of revolu- 

tion is examined by Guderley, Yoshlhara and Barish [g, 16 and 173, and by 

Fal * kovlch and Chernov [ lo] . In both cases the flow far from the body IS 

described by a similarity solution 

cp (2, Y) = ?P+ @ (E) (% = 4?P) (2.7) 

where for flow over a finite body the value n = ‘/, corresponds to profiles 

and n =‘/, corresponds to bodies of revolution. 

For smaller values of n In the solution (2.7) in both cases a limiting 

line arises. If the slmllarlty index varies in the range 4/s < n < 1 for 

two-dimensional flow and ‘/, < n 4 1 for axisymmetrlc flow, then the prob- 

lem of flow over a half-body which is expanding in width to infinity is 

obtained. 

An example of nearsonic flow of an ideal gas near a half-body of revolu- 

tion of the form Y - Jr Is givenbyLadyzhenski1 [18], who found the exact 

solution of an equation for the potential +(5) lnthe case a =“/, . 

The flow of real gases can be described by solutions for equations Of 

motion of an Ideal compressible fluid only in the case when they turn out 

to be asymptotical for equations of motion of real gases (l.l), (1.5) and 
(1.6) for small values of coefficients of viscosity and thermal conductivity. 

From this point of view it is interesting to examine the similarity solution 

(2.7). 

If one substitutes Expression (2.7) into Equation (2.6) which for the 

stationary case has the form 

(2.8) 
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ami lets 3/ go to inflnlty for finite values of 

tion (2.8) will de rease as various powers of g 

From this it is evident that for n > "/, the dissipation term In (2.8) 
is small compared to other terms and equations of motion for an ideal gas 

can be used. If however n r_ a/s , then the last term in the equation (2.8) 

becomes comparable In magnitude to the first term or even larger, Substitu- 
tion of Expression (2.7) Into initial equations (l.l), (1.5)and (1.6) leads to 

the same result. 

x , then terms of the Equa- 

(2.9) 

For the flow of (2.7) we can examine the Reynolds number NR~ and the 

Peclet number Npe, which characterize the effect of viscosity and thermal 
conductivity 

NR~ = P*ux/jJ,, Npe = p,UXIx, (2.10) 

Here U and X are the characteristic values of velocity and length. In 

the stationary problem (2.6) and (2.7) concerning asymptotic rules of decay 

of perturbations far from bodies over which the flow takes place, the char- 

acteristic velocity is the velocity of perturbed motion. From relationships 

(2.6) and (2.7) for components of velocity U and V far from the body the 

following result Is obtained 

u - yaw, , v - y3w (2.11) 

and the characteristic length X -y*. 

Taking into account these relationships the following asymptotic estimates 

are applicable 
NRC?, NP~ - ysn+ (2.12) 

For n > "/, Reynolds number and Peclet number are large and dissipation 

processes may-be neglected, however for n < "/, they are finite or even 

small. !&Is Indicates that even for fairly gradual change in flow parameters 

it Is necessary to take Into consideration viscosity and thermal conductivity. 

Thus the solution of the two-dimensional problem by Far&l' [83 for nesr- 

sonic flow of Ideal gas over finite bodies (n = 4/,) can be utilized In the 

case of a real gas with the exception of description of the shock front 

structure Itself which was Introduced Into this solution by Landau and Lif- 

shlts [12]. The asymptotic pattern of flow over finite bodies of revolution 

(n = '/,) by a gas stream which Is sonic at infinity Is qualitatively dlf- 

ferent from the pattern which Is obtained In the framework of equations of 

motion of an Ideal gas, and it must be established on the basis of the solu- 

tion of the full Equation (2.8). 

It is also Important to emphasize that, as is evident from relationships 

(2.11), consideration of viscosity and thermal conductivity in flow over 

finite bodies of revolution leads to a lowering of the degree of decay of 

velocity components with distance. 

A change in the asymptotic pattern of flow and a decrease in the degree 
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of decay of perturbations as compared to an ideal gas will also take place 

In half-bodies of revolution corresponding to values In the Interval 

'1, <nca/, . 

For stationary flows Equations (2.5) assume the form 

au au &i av 
az/=&, 

(k-l) v a%l 

%ray- y 
-- 

tJX2 
=0 (2.13) 

The system of equations (2.13) permits a similarity solution of the type 

(2.7) for a single value n = "/, . In order to examine this case we lntro- 

duce new variables 

u (2, Y) = Y_‘Sf (EL 2, (x7 Y) = Y-k (8 (F = ,z / Y”‘J) (2.14) 
Functions y(s) and g(g) must satisfy the equations 

Integrating the last equation and substituting the obtained relationship 

Into the the first equation, the system (2.15) can be represented In the form 

(2.16) 

gJ + ($ E” - f) g + f Ef + $ (Ic - 2) (c - fE) = 0, g = ; (C-fE) 

For the solution of the ordinary differential equation (2.16) in the axl- 

symmetric case (k = 2) numericalmethods were applied. Results of lntegra- 

tlon were compared with solution [18] of the problem of flow over half-bodies 

of revolution by a stream of ideal gas which 1s sonic at Infinity. Boundary 

conditions were selected In such a manner that In the solution of Equation 

(2.16) the outer limit of the boundary layer coincides with the walls of the 

half-body Y = Y(X) In the Ideal gas. The relationship Y(n) Is determined 

by the Index of sfmllarlty n = "/, and by the value of constant c In 

(2.16) 
Y = I/%&IL: 

In Fig,1 and 2 in the upper and lower half-plane, respectively, plots of 

dependence of functions f and Q on the similarity variable 5 are presented. 

Lines marked with Index 1 correspond to solutions of Equatlolls(2.16), with 

Index 2 correspond to results of[18]. In flow around "thick" half-bodieswhich 

correspond to relatively large values of c (c = 1.2; Fig.1) the differences 

oetween real and Ideal gases are not great. It may only be noted that the 

peak of the function f Is slightly cut off and shifted In the direction of 

flow. In the profile of the function ,J , on the other hand, arises a so 

far weakly developed maximum. With decreasing relative "thickness" of the 

half-body (c =0.01'19; Flg.2) these differences become substantial and dlssi- 

pation processes play an Increasing role. The increase ln the effect of 

viscosity and thermal conductivity In the flow over thinner half-bodies Is 

related to the circumstance that for decrease in the value of c , the values 

of Reynolds number and Peclet number (2.10) also decrease. In fact, It fol- 

lows from group properties of solution (2.14) for an Ideal gas that the 
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functions 
u = K2y-“f (KE), 

where K is an arbitrary constant, also represent solutions of equations of 

nearsonic motion of an Ideal gas. Boundary conditions permit to establish 

u = K3y-‘g (Kg) (2.17) 

Fig. 1 Fig. 2 

a connection between constants K and c for the half-bodies under examl- 

nation 

Now it is possible to find the dependence between Reynolds and Peclet 

numbers and the quantity c 

NR,, NP~ _ ~2y-21~K-~y" - K - ~'1s (2.18) 

From relationship (2.18) It is easy to see that the thinner the half-body 

(i.e. the smaller the quantity c ), the smaller will be the asymptotic 

values of NRe and N 
pe 

numbers and the more substantial will be the influ- 

ence of viscosity and thermal conductivity. As was to be expected, after 
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estimates (2.9), for flow over ialf-bodies of the form Y - JX (which cor- 

responds to a slmilarlty Index n = "/, ) corrections of solution [18] on 
account of viscosity and thermal conductivity have the same order of magni- 

tude as the solution Itself. 

The authors express their sincere gratitude to S.A. Khrlstlanovlch for 

formulation and discussion of problems which were examined. 
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